Contents
Overview
Objective analysis of variation
SPC must be practiced in 2 phases: The first phase is the initial establishment of the process, and the second phase is the regular production use of the process. In the second phase, we need to decide the period to be examined, depending upon the change in 4-M conditions and wear rate of parts used in the manufacturing process (machine parts, Jigs and fixture and tooling standard).Emphasis on early detection
An advantage of SPC over other methods of quality control, such as "inspection", is that it emphasizes early detection and prevention of problems, rather than the correction of problems after they have occurred.Increasing rate of production
In addition to reducing waste, SPC can lead to a reduction in the time required to produce the product. SPC makes it less likely the finished product will need to be reworked. SPC may also identify bottlenecks, waiting times, and other sources of delays within the process.Limitations
SPC is applied to reduce or eliminate process waste. This, in turn, eliminates the need for the process step of post-manufacture inspection. The success of SPC relies not only on the skill with which it is applied, but also on how suitable or amenable the process is to SPC. In some cases, it may be difficult to judge when the application of SPC is appropriate.[citation needed]History
SPC was pioneered by Walter A. Shewhart at Bell Laboratories in the early 1920s. Shewhart developed the control chart in 1924 and the concept of a state of statistical control. Statistical control is equivalent to the concept of exchangeability[1][2] developed by logician William Ernest Johnson also in 1924 in his book Logic, Part III: The Logical Foundations of Science.[3] Along with a gifted team at AT&T that included Harold Dodge and Harry Romig he worked to put sampling inspection on a rational statistical basis as well. Shewhart consulted with Colonel Leslie E. Simon in the application of control charts to munitions manufacture at the Army's Picatinney Arsenal in 1934. That successful application helped convince Army Ordnance to engage AT&T's George Edwards to consult on the use of statistical quality control among its divisions and contractors at the outbreak of World War II. W. Edwards Deming invited Shewhart to speak at the Graduate School of the U.S. Department of Agriculture, and served as the editor of Shewhart's book Statistical Method from the Viewpoint of Quality Control (1939) which was the result of that lecture. Deming was an important architect of the quality control short courses that trained American industry in the new techniques during WWII. The graduates of these wartime courses formed a new professional society in 1945, the American Society for Quality Control, which elected Edwards as its first president. Deming traveled to Japan during the Allied Occupation and met with the Union of Japanese Scientists and Engineers(JUSE)in an effort to introduce SPC methods to Japanese industry .[4][5]"Common" and "special" sources of variation
Main article: Common cause and special cause (statistics)
Shewhart read the new statistical theories coming out of Britain,
especially the work of "Student", Karl Pearson, and R. A. Fisher.
However, he understood that data from physical processes seldom produced
a "normal distribution curve"; that is, a Gaussian distribution or "bell curve".
He discovered that data from measurements of variation in manufacturing
did not always behave the way as data from measurements of natural
phenomena (for example, Brownian motion
of particles). Shewhart concluded that while every process displays
variation, some processes display variation that is controlled and
natural to the process ("common" sources of variation). Other processes
display variation that is not controlled and that is not present in the
causal system of the process at all times ("special" sources of
variation).[6]Application to non-manufacturing processes
In 1988, the Software Engineering Institute suggested that SPC could be applied to non-manufacturing processes, such as software engineering processes, in the Capability Maturity Model (CMM). The Level 4 and Level 5 practices of the Capability Maturity Model Integration (CMMI) use this concept. The notion that SPC is a useful tool when applied to non-repetitive, knowledge-intensive processes such as engineering has encountered skepticism and remains controversial.[7][8]Variation in manufacturing
In mass-manufacturing, traditionally, the quality of a finished article is ensured by post-manufacturing inspection of the product. Each article (or a sample of articles from a production lot) may be accepted or rejected according to how well it meets its design specifications. In contrast, SPC uses statistical tools to observe the performance of the production process in order to predict significant variations which may result in the production of a sub-standard article. A sources of variation at any one point of a production process will fall into one of two classes.- 1) "Common" - sometimes referred to as "normal" or "chance" sources of variation and
- 2) "Assignable" - sometimes referred to as "special" sources of variation.
Application of SPC
The application of SPC involves three main sets of activities:1. The first is understanding of the process. This is achieved by business process mapping. 2. The second is measuring the sources of variation assisted by the use of control charts and 3. The third is eliminating assignable (special) sources of variation.
Control charts
The data from measurements of variations at points on the process map is monitored using control charts. Control charts can differentiate "assignable" ("special") sources of variation from "common" sources. "Common" sources, because they are an expected part of the process, are of much less concern to the manufacturer than "assignable" sources. Using control charts is a continuous activity, ongoing over time.Stable process
When the process does not trigger any of the control chart "detection rules" for the control chart, it is said to be "stable". A process capability analysis may be performed on a stable process to predict the ability of the process to produce "conforming product" in the future.Excessive variation
When the process triggers any of the control chart "detection rules", (or alternatively, the process capability is low), other activities may be performed to identify the source of the excessive variation. The tools used in these extra activities include: Ishikawa diagrams, designed experiments, and Pareto charts. Designed experiments are critical to this phase of the application of SPC. They are a means of objectively quantifying the relative importance (strength) of sources of variation. Once the sources of variation have been quantified, those sources that are both statistically and practically significant can be eliminated. (A source that is statistically significant may not be considered cost effective to eliminate.) Methods of eliminating a source of variation might include: development of standards; staff training; error-proofing and changes to the process itself or its inputs.Mathematics of control charts
Digital control charts use logic based rules that determine "derived values" which signal the need for correction. For example,- derived value = last value + average absolute difference between the last N numbers.
See also
Wikimedia Commons has media related to Statistical process control. |
- Process control
- Process capability
- Process capability index
- Quality assurance
- Quality control
- ANOVA Gauge R&R
- Sampling (statistics)
- Stochastic control
- Electronic design automation
- Reliability engineering
- Six sigma
- Process Window Index
References
- Jump up ^ Barlow & Irony (1992)
- Jump up ^ Bergman (2009)
- Jump up ^ Zabell (1992)
- Jump up ^ Deming, W. Edwards, Lectures on statistical control of quality., Nippon Kagaku Gijutsu Remmei, 1950
- Jump up ^ Deming, W. Edwards and Dowd S. John (translator) Lecture to Japanese Management, Deming Electronic Network Web Site, 1950 (from a Japanese transcript of a lecture by Deming to "80% of Japanese top management" given at the Hotel de Yama at Mr. Hakone in August 1950)
- Jump up ^ "Why SPC?" British Deming Association SPC Press, Inc. 1992
- Jump up ^ Bob Raczynski and Bill Curtis (2008) Software Data Violate SPC's Underlying Assumptions, IEEE Software, May/June 2008, Vol. 25, No. 3, pp. 49-51
- Jump up ^ Robert V. Binder (1997) Can a Manufacturing Quality Model Work for Software?, IEEE Software, September/October 1997, pp. 101-105
Bibliography
- Barlow, R. E. & Irony, T. Z. (1992) "Foundations of statistical quality control" in Ghosh, M. & Pathak, P.K. (eds.) Current Issues in Statistical Inference: Essays in Honor of D. Basu, Hayward, CA: Institute of Mathematical Statistics, 99-112.
- Bergman, B. (2009) "Conceptualistic Pragmatism: A framework for Bayesian analysis?", IIE Transactions, 41, 86–93
- Deming, W E (1975) "On probability as a basis for action", The American Statistician, 29(4), 146–152
- — (1982) Out of the Crisis: Quality, Productivity and Competitive Position ISBN 0-521-30553-5
- Oakland, J (2002) Statistical Process Control ISBN 0-7506-5766-9
- Shewhart, W A (1931) Economic Control of Quality of Manufactured Product ISBN 0-87389-076-0
- — (1939) Statistical Method from the Viewpoint of Quality Control ISBN 0-486-65232-7
- Wheeler, D J (2000) Normality and the Process-Behaviour Chart ISBN 0-945320-56-6
- Wheeler, D J & Chambers, D S (1992) Understanding Statistical Process Control ISBN 0-945320-13-2
- Wheeler, Donald J. (1999). Understanding Variation: The Key to Managing Chaos - 2nd Edition. SPC Press, Inc. ISBN 0-945320-53-1.
- Wise, Stephen A. & Fair, Douglas C (1998). Innovative Control Charting: Practical SPC Solutions for Today's Manufacturing Environment. ASQ Quality Press. ISBN 0-87389-385-9
- Zabell, S. L. (1992). "Predicting the unpredictable". Synthese 90: 20
|
|||
|